Муниципальное бюджетное общеобразовательное учреждение города Кургана «Средняя общеобразовательная школа № 49»

Рассмотрена и принята на заседании

МО учителей предметов естественно-научного цикла

Протокол №1 от 31 августа 2016 г.

Утверждаю

Директор школы

/Т.А. Морковкина/

Приказ № 267 от 31 августа 2016 г.

Рабочая программа по учебному предмету «Информатика» Второй уровень обучения

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа учебного предмета «Информатика» для 5-9 классов основного общего образования составлена на основе:

- требований Федерального государственного образовательного стандарта основного общего образования, предъявляемых к результатам освоения основной образовательной программы (Приказ Министерства образования и науки РФ от 17 декабря 2010 г. № 1897 «Об утверждении федерального государственного образовательного стандарта основного общего образования» с изменениями и дополнениями Приказом Минобрнауки России от 29 декабря 2014 г. № 1644);
- авторской программы по информатике Босовой Л.Л. (Информатика. Программы для общеобразовательных организаций: 2-11 классы. Учебное издание / Автор-составитель: М. Н. Бородин.-М.: БИНОМ. Лаборатория знаний, 2015.-576 с. табл.);
- основных направлений программ, включенных в структуру основной образовательной программы;
- требований к уровню подготовки обучающихся для проведения основного государственного экзамена по информатике.

Цели реализации программы:

достижение обучающимися результатов изучения учебного предмета «Информатика» в соответствии с требованиями, утвержденными Федеральным государственным образовательным стандартом основного общего образования.

Задачами реализации программы учебного предмета являются:

- обеспечение в процессе изучения предмета условий для достижения планируемых результатов освоения основной образовательной программы основного общего образования всеми обучающимися, в том числе обучающимися с ограниченными возможностями здоровья и инвалидами;
- создание в процессе изучения предмета условий для:
- развития личности, способностей, удовлетворения познавательных интересов, самореализации обучающихся, в том числе одаренных;
- формирования ценностей обучающихся, основ их гражданской идентичности и социально-профессиональных ориентаций;
 - формирования у обучающихся опыта самостоятельной учебной деятельности;
- формирования у обучающихся навыков здорового и безопасного для человека и окружающей его среды образа жизни;
- знакомство учащихся с методами научного познания и методами исследования объектов и явлений, понимание учащимися отличий научных данных от непроверенной информации, ценности науки для удовлетворения бытовых, производственных и культурных потребностей человека;
- формирование компетентностей в области практического использования информационнокоммуникационных технологий, развитие информационной культуры и алгоритмического мышления, реализация инженерного образования на уровне основного общего образования.

Стремительное развитие информационно-коммуникационных технологий, их активное использование во всех сферах деятельности человека, требует профессиональной мобильности и готовности к саморазвитию и непрерывному образованию. В этих условиях возрастает роль фундаментального образования, обеспечивающего профессиональную мобильность человека, готовность его к освоению новых технологий, в том числе информационных.

Информатика - это естественнонаучная дисциплина о закономерностях протекания информационных процессов в системах различной природы, а также о методах и средствах их автоматизации. Курс информатики закладывает основы естественнонаучного мировоззрения и инженерного образования. Информатика имеет очень большое и все возрастающее число междисциплинарных связей, причем как на уровне понятийного аппарата, так и на уровне инструментария. Многие положения, развиваемые информатикой, рассматриваются как основа создания и использования информационных и коммуникационных технологий (ИКТ) - одного из наиболее значимых технологических достижений современной цивилизации.

Согласно требованиям ФГОС ООО изучение учебного предмета «Информатика» направлено на:

- формирование информационной и алгоритмической культуры;
- формирование представления о компьютере как универсальном устройстве обработки информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе;
- развитие умений составить и записать алгоритм для конкретного исполнителя;
- формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей (таблицы, схемы, графики, диаграммы), с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

В содержании курса информатики основного общего образования делается акцент на изучение фундаментальных основ информатики, формировании информационной культуры, развитии алгоритмического мышления, реализации инженерного образования.

Современные научные представления об информационной картине мира, понятиях информатики и методах работы с информацией отражены в содержательном материале учебнометодических комплексов по информатике. Изложение теории и практики опирается на:

- закономерности протекания информационных процессов в системах различной природы, их общность и особенности;
- информационные процессы функционирования, развития, управления в природных, социальных и технических системах;
- понятия: информационный процесс, информационная модель, информационный объект, информационная технология, информационные основы управления, алгоритм, автоматизированная информационная система, информационная цивилизация и др.;
- методы современного научного познания: системноинформационный анализ, информационное моделирование, компьютерный эксперимент;
- математический аппарат при решении учебных и практических задач информатики;
- основные способы алгоритмизации и формализованного представления данных.

СОДЕРЖАНИЕ	5 класс	6 класс	7 класс	8 класс	9 класс
- Информация вокруг нас	+				
- Компьютер	+				
	+				
- Подготовка текстов на компьютере					
- Компьютерная графика	+				
		+			
- Создание мультимедийных объектов					
- Объекты и системы		+			
- Информационные модели		+			
- Алгоритмика		+			

Поскольку курс информатики для основной школы (7-9 классы) носит общеобразовательный характер, то его содержание обеспечивает знакомство учащихся со всеми <u>его основными разделами</u>:

1. Введение			
- Информация и информационные		+	
процессы		'	

- Компьютер - универсальное				
устройство обработки данных		+		
2. Математические основы				
информатики				
1 1				
- Тексты и кодирование		+		
- Дискретизация		+		
- Системы счисления			+	
- Элементы комбинаторики, теории			+	
множеств и математической логики.				
- Списки, графы, деревья				+
3. Алгоритмы и элементы				
программирования				
- Исполнители и алгоритмы.				
Управление исполнителями			+	<u> </u>
- Алгоритмические конструкции			+	+
- Разработка алгоритмов и программ				+
- Анализ алгоритмов				+
- Робототехника				+
1 0001010				<u>'</u>
- Математическое моделирование				+
4. Использование программных				
ч. использование программных систем и сервисов				
- Файловая система		+		
		Ţ		
- Подготовка текстов и		+		
демонстрационных материалов				
- Электронные (динамические)				+
таблицы				
				+
- Базы данных. Поиск информации				
- Работа в информационном				
пространстве. Информационно-		+		+
коммуникационные технологии				

Новизна рабочей программы учебного предмета «Информатика»

Изменения содержания рабочей программы, по сравнению с примерной программой учебного предмета «Информатика» основного общего образования:

из раздела «Компьютер - универсальное устройство обработки данных» убрана тема «История и тенденции развития компьютеров, улучшение характеристик компьютеров», так как содержание дублируется в теме «Основные этапы и тенденции развития ИКТ» из раздела примерной программы «Работа в информационном пространстве. Информационно - коммуникационные технологии»;

из раздела «Элементы комбинаторики, теории множеств и математической логики» убрана тема «Количество текстов данной длины в данном алфавите», так как содержание дублируется в теме «Количество различных текстов данной длины в данном алфавите» из раздела примерной программы «Тексты и кодирование»;

из раздела «**Исполнители и алгоритмы. Управление исполнителями»** убрана тема «Программное управление самодвижущимся роботом», так как содержание дублируется в теме «Ручное и программное управление роботами» из раздела примерной программы «Робототехника»:

из раздела «Исполнители и алгоритмы. Управление исполнителями» убрана тема «Понятие об этапах разработки программ и приемах отладки программ», так как содержание дублируется в теме «Понятие об этапах разработки программ: составление требований к программе, выбор алгоритма и его реализация в виде программы на выбранном алгоритмическом языке, отладка программы с помощью выбранной системы программирования, тестирование» из раздела примерной программы «Разработка алгоритмов и программ»;

в 5-6 классах добавлены разделы, которые присутствуют в учебно-методическом комплексе Босовой Л.Л.:

- Информация вокруг нас;
- Компьютер;
- Подготовка текстов на компьютере;
- Компьютерная графика;
- Создание мультимедийных объектов;
- Объекты и системы;
- Информационные модели;
- Алгоритмика;

Учебный предмет «Информатика» входит в предметную область «Математика и информатика». В учебном плане, за счет части часов, формируемой участниками образовательных отношений на освоение учебного предмета «Информатика» на уровне основного общего образования отводится 34 часа из расчета: 17 часов - 5 класс, 17 часов - 6 класс и за счет часов обязательной части 102 часа из расчета: 34 часа - 7 класс, 34 часа - 8 класс, 34 часа - 9 класс.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ УЧЕБНОГО ПРЕДМЕТА «ИНФОРМАТИКА» Планируемые личностные результаты освоения учебного предмета «Информатика»:

- 1. Российская гражданская идентичность (патриотизм, уважение к Отечеству, к прошлому и настоящему многонационального народа России, воспитанное чувство ответственности и долга перед Родиной, идентичность с территорией и т.д.). Осознание своей этнической принадлежности, знание, уважительное и доброжелательное отношение к истории, языка, культуры своего народа, своего края, основ культурного наследия народов России и человечества; интериоризация гуманистических, демократических и традиционных ценностей многонационального российского общества.
- 2. Готовность и способность обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию; готовность и способность осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учетом устойчивых познавательных интересов.
- 3. Развитое моральное сознание и компетентность в решении моральных проблем на основе личностного выбора, формирование нравственных чувств и нравственного поведения, осознанного и ответственного отношения к собственным поступкам (способность к нравственному самосовершенствованию; знание основных норм морали, нравственных, духовных идеалов, хранимых в культурных традициях народов России, готовность на их основе к сознательному самоограничению в поступках, поведении, расточительном потребительстве; сформированность представлений об основах светской этики; понимание значения нравственности, веры и религии в жизни человека, семьи и общества). Сформированность ответственного отношения к учению; уважительного отношения к труду, наличие опыта участия в социально значимом труде. Осознание значения семьи в жизни человека и общества, принятие ценности семейной жизни, уважительное и заботливое отношение к членам своей семьи.
- 4. Сформированность целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, учитывающего социальное, культурное, языковое,

духовное многообразие современного мира.

- 5. Осознанное, уважительное и доброжелательное отношение к другому человеку, его мнению, мировоззрению, культуре, языку, вере, гражданской позиции. Готовность и способность вести диалог с другими людьми и достигать в нем взаимопонимания (идентификация себя как полноправного субъекта общения, готовность к конструированию образа партнера по диалогу, готовность к конструированию образа допустимых способов диалога, готовность к конструированию процесса диалога как конвенционирования интересов, процедур, готовность и способность к ведению переговоров). Сформированность коммуникативной компетентности в общении и сотрудничестве со сверстниками, детьми старшего и младшего возраста, взрослыми в процессе образовательной, общественно полезной, учебно-исследовательской, творческой и других видов деятельности.
- 6. Освоенность социальных норм, правил поведения, ролей и форм социальной жизни в группах и сообществах, включая взрослые и социальные сообщества. Участие в школьном самоуправлении и общественной жизни в пределах возрастных компетенций с учетом региональных, этнокультурных, социальных и экономических особенностей (формирование готовности к участию в процессе упорядочения социальных связей и отношений, в которые включены и которые формируют сами учащиеся; включенность в непосредственное гражданское участие, готовность к участию в жизнедеятельности подросткового общественного объединения, включенного в продуктивное взаимодействие с социальной средой и социальными институтами, идентификация себя в качестве субъекта социальных преобразований, освоение компетентностей в сфере организаторской деятельности; интериоризация ценностей созидательного отношения к окружающей социальной действительности, ценностей социального творчества, ценности продуктивной организации совместной деятельности, самореализации в группе и организации, ценности «другого» как равноправного партнера, формирование компетенций анализа, проектирования, организации деятельности, рефлексии изменений, способов взаимовыгодного сотрудничества, способов реализации собственного лидерского потенциала).
- 7. Сформированность ценности здорового и безопасного образа жизни; интериоризация правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровью людей, правил поведения на транспорте и на дорогах.
- 8. Развитость эстетического сознания через освоение художественного наследия народов России и мира, творческой деятельности эстетического характера (способность понимать художественные произведения, отражающие разные этнокультурные традиции; сформированность основ художественной культуры обучающихся; способность к эмоциональноценностному освоению мира, самовыражению и ориентации в художественном и нравственном пространстве культуры; уважение к истории культуры своего Отечества; развитая потребность в общении с художественными произведениями, сформированность активного отношения к традициям художественной культуры).
- 9. Сформированность основ экологической культуры, соответствующей современному уровню экологического мышления, наличие опыта экологически ориентированной рефлексивнооценочной и практической деятельности в жизненных ситуациях.

Планируемые **метапредметные результаты** освоения учебного предмета «Информатика»: Метапредметные результаты, включают освоенные обучающимися межпредметные понятия и универсальные учебные действия (регулятивные, познавательные, коммуникативные).

Межпредметные понятия

Условием формирования межпредметных понятий, например, таких как система, факт, закономерность, феномен, анализ, синтез является овладение обучающимися основами читательской компетенции, приобретение навыков работы с информацией, участие в проектной деятельности. Обучающиеся овладеют чтением как средством осуществления своих дальнейших планов: продолжения образования и самообразования, осознанного планирования своего актуального и перспективного круга чтения, в том числе досугового, подготовки к трудовой и

социальной деятельности. У выпускников будет сформирована потребность в систематическом чтении как средстве познания мира и себя в этом мире, гармонизации отношений человека и общества, создании образа «потребного будущего».

При изучении учебного предмета «Информатика» обучающиеся усовершенствуют приобретённые на первом уровне навыки работы с информацией и пополнят их. Они смогут работать с текстами, преобразовывать и интерпретировать содержащуюся в них информацию, в том числе:

- систематизировать, сопоставлять, анализировать, обобщать и интерпретировать информацию, содержащуюся в готовых информационных объектах;
- выделять главную и избыточную информацию, выполнять смысловое свёртывание выделенных фактов, мыслей; представлять информацию в сжатой словесной форме (в виде плана или тезисов) и в наглядно-символической форме (в виде таблиц, графических схем и диаграмм, карт понятий концептуальных диаграмм, опорных конспектов);
- заполнять и дополнять таблицы, схемы, диаграммы, тексты.

В ходе изучения учебного предмета «Информатика» обучающиеся приобретут опыт проектной деятельности как особой формы учебной работы, способствующей воспитанию самостоятельности, инициативности, ответственности, повышению мотивации и эффективности учебной деятельности; в ходе реализации исходного замысла на практическом уровне овладеют умением выбирать адекватные стоящей задаче средства, принимать решения, в том числе и в ситуациях неопределённости. Они получат возможность развить способность к разработке нескольких вариантов решений, к поиску нестандартных решений, поиску и осуществлению наиболее приемлемого решения.

В соответствии ФГОС ООО выделяются три группы универсальных учебных действий: регулятивные, познавательные, коммуникативные.

Регулятивные УУД

- 1. Умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учебе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности. Таким образом, в качестве планируемых метапредметных результатов возможен, но не ограничивается следующим, список того, что обучающийся сможет:
- анализировать существующие и планировать будущие образовательные результаты;
- идентифицировать собственные проблемы и определять главную проблему;
- выдвигать версии решения проблемы, формулировать гипотезы, предвосхищать конечный результат;
- ставить цель деятельности на основе определенной проблемы и существующих возможностей;
- формулировать учебные задачи как шаги достижения поставленной цели деятельности;
- обосновывать целевые ориентиры и приоритеты ссылками на ценности, указывая и обосновывая логическую последовательность шагов.
- 2. Умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач. Обучающийся сможет:
- определять действие(я) в соответствии с учебной и познавательной задачей, составлять алгоритм действий в соответствии с учебной и познавательной задачей;
- обосновывать и осуществлять выбор наиболее эффективных способов решения учебных и познавательных задач:
- определять/находить, в том числе из предложенных вариантов, условия для выполнения учебной и познавательной задачи;
- выстраивать жизненные планы на краткосрочное будущее (заявлять целевые ориентиры, ставить адекватные им задачи и предлагать действия, указывая и обосновывая логическую последовательность шагов);
- выбирать из предложенных и самостоятельно искать средства/ресурсы для решения задачи/достижения цели;

- составлять план решения проблемы (выполнения проекта, проведения исследования);
- определять потенциальные затруднения при решении учебной и познавательной задачи и находить средства для их устранения;
- описывать свой опыт, оформляя его для передачи другим людям в виде технологии решения практических задач определенного класса;
- планировать и корректировать свою индивидуальную образовательную траекторию.
- 3. Умение соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности в процессе достижения результата, определять способы действий в рамках предложенных условий и требований, корректировать свои действия в соответствии с изменяющейся ситуацией. Обучающийся сможет:
- определять совместно с педагогом и сверстниками критерии планируемых результатов и критерии оценки своей учебной деятельности;
- систематизировать (в том числе выбирать приоритетные) критерии планируемых результатов и оценки своей деятельности;
- отбирать инструменты для оценивания своей деятельности, осуществлять самоконтроль своей деятельности в рамках предложенных условий и требований;
- оценивать свою деятельность, аргументируя причины достижения или отсутствия планируемого результата;
- находить достаточные средства для выполнения учебных действий в изменяющейся ситуации и/или при отсутствии планируемого результата;
- работая по своему плану, вносить коррективы в текущую деятельность на основе анализа изменений ситуации для получения запланированных характеристик продукта/результата;
- устанавливать связь между полученными характеристиками продукта и характеристиками процесса деятельности, по завершении деятельности предлагать изменение характеристик процесса для получения улучшенных характеристик продукта;
- сверять свои действия с целью и, при необходимости, исправлять ошибки самостоятельно.
- 4. Умение оценивать правильность выполнения учебной задачи, собственные возможности ее решения. Обучающийся сможет:
- определять критерии правильности (корректности) выполнения учебной задачи;
- анализировать и обосновывать применение соответствующего инструментария для выполнения учебной задачи;
- свободно пользоваться выработанными критериями оценки и самооценки, исходя из цели и имеющихся критериев, различая результат и способы действий;
- оценивать продукт своей деятельности по заданным и/или самостоятельно определенным критериям в соответствии с целью деятельности;
- обосновывать достижимость цели выбранным способом на основе оценки своих внутренних ресурсов и доступных внешних ресурсов;
- фиксировать и анализировать динамику собственных образовательных результатов.
- 5. Владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной. Обучающийся сможет:
- наблюдать и анализировать свою учебную и познавательную деятельность и деятельность других обучающихся в процессе взаимопроверки;
- соотносить реальные и планируемые результаты индивидуальной образовательной деятельности и делать выводы;
- принимать решение в учебной ситуации и нести за него ответственность;
- самостоятельно определять причины своего успеха или неуспеха и находить способы выхода из ситуации неуспеха;
- ретроспективно определять, какие действия по решению учебной задачи или параметры этих действий привели к получению имеющегося продукта учебной деятельности;
- демонстрировать приемы регуляции психофизиологических/ эмоциональных состояний для

достижения эффекта успокоения (устранения эмоциональной напряженности), эффекта восстановления (ослабления проявлений утомления), эффекта активизации (повышения психофизиологической реактивности).

Познавательные УУД

- 6. Умение определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы. Обучающийся сможет:
- подбирать слова, соподчиненные ключевому слову, определяющие его признаки и свойства (под-идеи);
- выстраивать логическую цепь ключевого слова и соподчиненных ему слов;
- выделять признак двух или нескольких предметов или явлений и объяснять их сходство;
- объединять предметы и явления в группы по определенным признакам, сравнивать, классифицировать и обобщать факты и явления;
- выделять явление из общего ряда других явлений;
- определять обстоятельства, которые предшествовали возникновению связи между явлениями, из этих обстоятельств выделять определяющие, способные быть причиной данного явления, выявлять причины и следствия явлений;
- строить рассуждение от общих закономерностей к частным явлениям и от частных явлений к общим закономерностям;
- строить рассуждение на основе сравнения предметов и явлений, выделяя при этом общие признаки;
- излагать полученную информацию, интерпретируя ее в контексте решаемой задачи;
- самостоятельно указывать на информацию, нуждающуюся в проверке, предлагать и применять способ проверки достоверности информации;
- вербализовать эмоциональное впечатление, оказанное на него источником;
- объяснять явления, процессы, связи и отношения, выявляемые в ходе познавательной и исследовательской деятельности (приводить объяснение с изменением формы представления; объяснять, детализируя или обобщая; объяснять с заданной точки зрения);
- выявлять и называть причины события, явления, в том числе возможные причины/наиболее вероятные причины, возможные последствия заданной причины, самостоятельно осуществляя причинно- следственный анализ;
- делать вывод на основе критического анализа разных точек зрения, подтверждать вывод собственной аргументацией или самостоятельно полученными данными.
- 7. Умение создавать, применять и преобразовывать знаки и символы, модели и схемы для решения учебных и познавательных задач. Обучающийся сможет:
- обозначать символом и знаком предмет и/или явление;
- определять логические связи между предметами и/или явлениями, обозначать данные логические связи с помощью знаков в схеме;
- создавать абстрактный или реальный образ предмета и/или явления;
- строить модель/схему на основе условий задачи и/или способа решения задачи;
- создавать вербальные, вещественные и информационные модели с выделением существенных характеристик объекта для определения способа решения задачи в соответствии с ситуацией;
- преобразовывать модели с целью выявления общих законов, определяющих данную предметную область;
- переводить сложную по составу (многоаспектную) информацию из графического или формализованного (символьного) представления в текстовое, и наоборот;
- строить схему, алгоритм действия, исправлять или восстанавливать неизвестный ранее алгоритм на основе имеющегося знания об объекте, к которому применяется алгоритм;
- строить доказательство: прямое, косвенное, от противного;

- анализировать/рефлексировать опыт разработки и реализации учебного проекта, исследования (теоретического, эмпирического) на основе предложенной проблемной ситуации, поставленной цели и/или заданных критериев оценки продукта/результата.
 - 8. Смысловое чтение. Обучающийся сможет:
- находить в тексте требуемую информацию (в соответствии с целями своей деятельности);
- ориентироваться в содержании текста, понимать целостный смысл текста, структурировать текст;
- устанавливать взаимосвязь описанных в тексте событий, явлений, процессов;
- резюмировать главную идею текста;
- преобразовывать текст, «переводя» его в другую модальность, интерпретировать текст (художественный и нехудожественный учебный, научно-популярный, информационный, текст non-fiction);
- критически оценивать содержание и форму текста. Коммуникативные УУЛ
- 9. Умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учета интересов; формулировать, аргументировать и отстаивать свое мнение. Обучающийся сможет:
- определять возможные роли в совместной деятельности;
- играть определенную роль в совместной деятельности;
- принимать позицию собеседника, понимая позицию другого, различать в его речи: мнение (точку зрения), доказательство (аргументы), факты; гипотезы, аксиомы, теории;
- определять свои действия и действия партнера, которые способствовали или препятствовали продуктивной коммуникации;
- строить позитивные отношения в процессе учебной и познавательной деятельности;
- корректно и аргументированно отстаивать свою точку зрения, в дискуссии уметь выдвигать контраргументы, перефразировать свою мысль (владение механизмом эквивалентных замен);
- критически относиться к своему мнению, с достоинством признавать ошибочность своего мнения (если оно таково) и корректировать его;
- предлагать альтернативное решение в конфликтной ситуации;
- выделять общую точку зрения в дискуссии;
- договариваться о правилах и вопросах для обсуждения в соответствии с поставленной перед группой задачей;
- организовывать учебное взаимодействие в группе (определять общие цели, распределять роли, договариваться друг с другом и т. д.);
- устранять в рамках диалога разрывы в коммуникации, обусловленные непониманием/неприятием со стороны собеседника задачи, формы или содержания диалога.
- 10. Умение осознанно использовать речевые средства в соответствии с задачей коммуникации для выражения своих чувств, мыслей и потребностей; планирования и регуляции своей деятельности; владение устной и письменной речью, монологической контекстной речью. Обучающийся сможет:
- определять задачу коммуникации и в соответствии с ней отбирать речевые средства;
- отбирать и использовать речевые средства в процессе коммуникации с другими людьми (диалог в паре, в малой группе и т. д.);
- представлять в устной или письменной форме развернутый план собственной деятельности;
- соблюдать нормы публичной речи и регламент в монологе и дискуссии в соответствии с коммуникативной задачей;
- высказывать и обосновывать мнение (суждение) и запрашивать мнение партнера в рамках диалога:
- принимать решение в ходе диалога и согласовывать его с собеседником;
- создавать письменные «клишированные» и оригинальные тексты с использованием

необходимых речевых средств;

- использовать вербальные средства (средства логической связи) для выделения смысловых блоков своего выступления;
- использовать невербальные средства или наглядные материалы, подготовленные/отобранные под руководством учителя;
- делать оценочный вывод о достижении цели коммуникации непосредственно после завершения коммуникативного контакта и обосновывать его.
- 11. Формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции). Обучающийся сможет:
- целенаправленно искать и использовать информационные ресурсы, необходимые для решения учебных и практических задач с помощью средств ИКТ;
- выбирать, строить и использовать адекватную информационную модель для передачи своих мыслей средствами естественных и формальных языков в соответствии с условиями коммуникации;
- выделять информационный аспект задачи, оперировать данными, использовать модель решения задачи;
- использовать компьютерные технологии (включая выбор адекватных задаче инструментальных программно-аппаратных средств и сервисов) для решения информационных и коммуникационных учебных задач, в том числе: вычисление, написание писем, сочинений, докладов, рефератов, создание презентаций и др.;
- использовать информацию с учетом этических и правовых норм;
- создавать информационные ресурсы разного типа и для разных аудиторий, соблюдать информационную гигиену и правила информационной безопасности.
- 12. Развитая мотивация к овладению культурой активного использования словарей и других поисковых систем. Обучающийся сможет:
- определять необходимые ключевые поисковые слова и запросы;
- осуществлять взаимодействие с электронными поисковыми системами, словарями;
- формировать множественную выборку из поисковых источников для объективизации результатов поиска;
- соотносить полученные результаты поиска со своей деятельностью.

Планируемые **предметные результаты** освоения учебного предмета «Информатика»:

5 класс

Информация вокруг нас

Выпускник научится:

- понимать и правильно применять на бытовом уровне понятий «информация», «информационный объект»;
- приводить примеры передачи, хранения и обработки информации в деятельности человека, в живой природе, обществе, технике;
- приводить примеры древних и современных информационных носителей;
- классифицировать информацию по способам её восприятия человеком, по формам представления на материальных носителях;
- кодировать и декодировать сообщения, используя простейшие коды;
- определять, информативно или нет некоторое сообщение, если известны способности конкретного субъекта к его восприятию.

Выпускник получит возможность:

- сформировать представление об информации как одном из основных понятий современной науки, об информационных процессах и их роли в современном мире;
- сформировать представление о способах кодирования информации;
- преобразовывать информацию по заданным правилам и путём рассуждений;
- научиться решать логические задачи на установление взаимного соответствия с использованием таблиц;
- приводить примеры единичных и общих понятий, отношений между понятиями;

- для объектов окружающей действительности указывать их признаки свойства, действия, поведение, состояния;
- называть отношения, связывающие данный объект с другими объектами;
- осуществлять деление заданного множества объектов на классы по заданному или самостоятельно выбранному признаку основанию классификации;
- приводить примеры материальных, нематериальных и смешанных систем.

Компьютер

Выпускник научится:

- называть функции и характеристики основных устройств компьютера;
- выполнять основные операции с объектами файловой системы;

Выпускник получит возможность:

- научиться систематизировать знания о принципах организации файловой системы;
- сформировать представления о требованиях техники безопасности, гигиены, эргономики и ресурсосбережения при работе со средствами информационных и коммуникационных технологий;

Подготовка текстов на компьютере Выпускник научится:

- применять текстовый редактор для набора, редактирования и форматирования простейших текстов на русском языке;
- выделять, перемещать и удалять фрагменты текста; создавать тексты с повторяющимися фрагментами;
- использовать простые способы форматирования (выделение жирным шрифтом, курсивом, изменение величины шрифта) текстов;
- создавать и форматировать списки;
- создавать, форматировать и заполнять данными таблицы;

Выпускник получит возможность:

- осуществлять орфографический контроль в текстовом документе с помощью средств текстового процессора;
- оформлять текст в соответствии с заданными требованиями к шрифту, его начертанию, размеру и цвету, к выравниванию текста.

Компьютерная графика

Выпускник научится:

- использовать основные приёмы создания цифровых изображений в простейших графических редакторах;
- выделять, перемещать и удалять фрагменты изображений;
- применять простейший графический редактор для создания и редактирования простых рисунков;

Выпускник получит возможность:

- видоизменять готовые графические изображения с помощью средств графического редактора.

6 класс

Создание мультимедийных объектов Выпускник научится:

- использовать основные приёмы создания презентаций в редакторах презентаций;

Выпускник получит возможность:

- научиться создавать на заданную тему мультимедийную презентацию с гиперссылками, слайды которой содержат тексты, звуки, графические изображения; демонстрировать презентацию на экране компьютера или с помощью проектора.

Объекты и системы

Выпускник научится:

- называть признаки и состав объектов;
- осуществлять классификацию объектов по характерным признакам;
- систематизировать знания о принципах организации файловой системы, основных возможностях графического интерфейса и правилах организации индивидуального

информационного пространства;

- понимать принципы взаимодействия различных систем объектов.

Выпускник получит возможность:

- сформировать начальные представления о назначении и области применения объектов и систем:
- познакомится с правилами построения системы объектов.

Информационные модели

Выпускник научится:

- понимать сущность понятий «модель», «информационная модель»;
- различать натурные и информационные модели, приводить их примеры;
- «читать» информационные модели (простые таблицы, круговые и столбиковые диаграммы, схемы и др.), встречающиеся в повседневной жизни;
- строить простые информационные модели объектов из различных предметных областей.

Выпускник получит возможность:

- сформировать начальные представления о назначении и области применения моделей; о моделировании как методе научного познания;
- познакомится с правилами построения табличных моделей, схем, графов, деревьев;
- выбирать форму представления данных (таблица, схема, график, диаграмма, граф, дерево) в соответствии с поставленной задачей.

Алгоритмика

Выпускник научится:

- понимать смысл понятия «алгоритм», приводить примеры алгоритмов;
- понимать термины «исполнитель», «формальный исполнитель», «среда исполнителя», «система команд исполнителя»; приводить примеры формальных и неформальных исполнителей;
- осуществлять управление имеющимся формальным исполнителем;
- понимать правила записи и выполнения алгоритмов, содержащих алгоритмические конструкции «следование», «ветвление», «цикл»;
- подбирать алгоритмическую конструкцию, соответствующую заданной ситуации;
- исполнять линейный алгоритм для формального исполнителя с заданной системой команд;
- разрабатывать план действий для решения задач на переправы, переливания и пр.

Выпускник получит возможность:

- исполнять алгоритмы, содержащие ветвления и повторения, для формального исполнителя с заданной системой команд;
- по данному алгоритму определять, для решения какой задачи он предназначен;
- разрабатывать в среде формального исполнителя короткие алгоритмы, содержащие базовые алгоритмические конструкции и вспомогательные алгоритмы.

7 класс

Информация и информационные процессы Выпускник научится:

- различать содержание основных понятий предмета: информацион, информационный процесс, информационная система, информационная модель и др;
- различать виды информации по способам её восприятия человеком и по способам её представления на материальных носителях;
- раскрывать общие закономерности протекания информационных процессов в системах различной природы;
- приводить примеры информационных процессов процессов, связанные с хранением, преобразованием и передачей данных в живой природе и технике;
- классифицировать средства ИКТ в соответствии с кругом выполняемых задач.

Выпускник получит возможность:

осознано подходить к выбору ИКТ - средств для своих учебных и иных целей.

Работа в информационном пространстве. Информационно-коммуникационные технологии Выпускник научится:

- анализировать доменные имена компьютеров и адреса документов в Интернете;

- проводить поиск информации в сети Интернет по запросам с использованием логических операций.

Выпускник получит возможность:

- познакомиться с принципами функционирования Интернета и сетевого взаимодействия между компьютерами, с методами поиска в Интернете;
- познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами подлинности (пример: наличие электронной подписи); познакомиться с возможными подходами к оценке достоверности информации (пример: сравнение данных из разных источников).

Выпускник овладеет (как результат применения программных систем и интернетсервисов в данном курсе и во всем образовательном процессе):

- приемами безопасной организации своего личного пространства данных с использованием индивидуальных накопителей данных, интернет-сервисов и т. п.;
- основами соблюдения норм информационной этики и права.

Тексты и кодирование

Выпускник научится:

- описывать размер двоичных текстов, используя термины «бит», «байт» и производные от них;
- кодировать и декодировать тексты по заданной кодовой таблице;
- определять минимальную длину кодового слова по заданным алфавиту кодируемого текста и кодовому алфавиту (для кодового алфавита из 2, 3 или 4 символов);
- определять длину кодовой последовательности по длине исходного текста и кодовой таблице равномерного кода.

Выпускник получит возможность:

- узнать о том, что любые дискретные данные можно описать, используя алфавит, содержащий только два символа, например, 0 и 1;
- познакомиться с тем, как информация (данные) представляется в современных компьютерах и робототехнических системах.

Компьютер - универсальное устройство обработки данных Выпускник научится:

- узнает о назначении основных компонентов компьютера (процессора, оперативной памяти, внешней энергонезависимой памяти, устройств ввода-вывода), характеристиках этих устройств;
- определять качественные и количественные характеристики компонентов компьютера;
- узнает о истории и тенденциях развития компьютеров; о том как можно улучшить характеристики компьютеров;
- узнает о том какие задачи решаются с помощью суперкомпьютеров.

Выпускник получит возможность:

узнать о физических ограничениях на значения характеристик компьютера.

Файловая система

Выпускник научится:

- классифицировать файлы по типу и иным параметрам;
- выполнять основные операции с файлами (создавать, сохранять, редактировать, удалять, архивировать, «распаковывать» архивные файлы);
- разбираться в иерархической структуре файловой системы;
- осуществлять поиск файлов средствами операционной системы;

Выпускник получит возможность:

- научиться систематизировать знания о принципах организации файловой системы, основных возможностях графического интерфейса и правилах организации индивидуального

Подготовка текстов и демонстрационных материалов Выпускник научится:

- применять основные правила создания текстовых документов;
- применять текстовый редактор для набора, редактирования и форматирования простейших текстов на русском и иностранном языках;
- выделять, перемещать и удалять фрагменты текста; создавать тексты с повторяющимися фрагментами;
- использовать простые способы форматирования (выделение жирным шрифтом, курсивом, изменение величины шрифта) текстов;
- создавать и форматировать списки;
- создавать, форматировать и заполнять данными таблицы;
- создавать круговые и столбиковые диаграммы;
- применять простейший графический редактор для создания и редактирования простых рисунков;
- использовать основные приёмы создания презентаций в редакторах презентаций;

Выпускник получит возможность:

- создавать объемные текстовые документы, включающие списки, таблицы, диаграммы, рисунки;
- осуществлять орфографический контроль в текстовом документе с помощью средств текстового процессора;
- оформлять текст в соответствии с заданными требованиями к шрифту, его начертанию, размеру и цвету, к выравниванию текста;
- видоизменять готовые графические изображения с помощью средств графического редактора;
- научиться создавать сложные графические объекты с повторяющимися и /или преобразованными фрагментами;
- научиться создавать на заданную тему мультимедийную презентацию с гиперссылками, слайды которой содержат тексты, звуки, графические изображения; демонстрировать презентацию на экране компьютера или с помощью проектора;

Дискретизация

Выпускник научится:

- оперировать понятиями, связанными с передачей данных (источник и приемник данных: канал связи, скорость передачи данных по каналу связи, пропускная способность канала связи);
- записывать в двоичной системе целые числа от 0 до 1024; переводить заданное натуральное число из десятичной записи в двоичную и из двоичной в десятичную; сравнивать числа в двоичной записи; складывать и вычитать числа, записанные в двоичной системе счисления;
- узнает о дискретном представлении аудио-визуальных данных.

Выпускник получит возможность:

- научиться оценивать информационный объём сообщения, записанного символами произвольного алфавита
- переводить небольшие десятичные числа из восьмеричной и шестнадцатеричной системы счисления в десятичную систему счисления;
- познакомиться с тем, как информация представляется в компьютере, в том числе с двоичным кодированием текстов, графических изображений, звука;
- узнать о том, что в сфере информатики и ИКТ существуют международные и национальные стандарты.

8 класс

Системы счисления

Выпускник научится:

- оперировать понятиями, связанными с передачей данных (источник и приемник данных: канал связи, скорость передачи данных по каналу связи, пропускная способность канала связи);
- записывать в двоичной системе целые числа от 0 до 1024; переводить заданное натуральное число из десятичной записи в двоичной и из двоичной в десятичную; сравнивать числа в двоичной записи; складывать и вычитать числа, записанные в двоичной системе счисления;

Выпускник получит возможность:

- узнать о том, что любые дискретные данные можно описать, используя алфавит, содержащий только два символа, например, 0 и 1;
- познакомиться с тем, как информация (данные) представляется в современных компьютерах и робототехнических системах;

Элементы комбинаторики, теории множеств и математической логики. Выпускник научится:

- записывать логические выражения составленные с помощью операций «и», «или», «не» и скобок, определять истинность такого составного высказывания, если известны значения истинности входящих в него элементарных высказываний;
- определять количество элементов в множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения;

Выпускник получит возможность:

- научиться решать логические задачи с использованием таблиц истинности;
- научиться решать логические задачи путем составления логических выражений и их преобразования с использованием основных свойств логических операций.

Исполнители и алгоритмы. Управление исполнителями Выпускник научится:

- составлять алгоритмы для решения учебных задач различных типов;
- выражать алгоритм решения задачи различными способами (словесным, графическим, в том числе и в виде блок-схемы, с помощью формальных языков и др.);
- определять наиболее оптимальный способ выражения алгоритма для решения конкретных задач (словесный, графический, с помощью формальных языков);
- определять результат выполнения заданного алгоритма или его фрагмента;
- использовать термины «исполнитель», «алгоритм», «программа», а также понимать разницу между употреблением этих терминов в обыденной речи и в информатике;

Выпускник получит возможность:

- познакомиться с понятием «управление», с примерами того, как компьютер управляет различными системами (роботы, летательные и космические аппараты, станки, оросительные системы, движущиеся модели и др.);
- познакомиться с учебной средой составления программ управления автономными роботами и разобрать примеры алгоритмов управления, разработанными в этой среде.

Алгоритмические конструкции Выпускник научится:

- оперировать алгоритмическими конструкциями «следование», «ветвление», «цикл» (подбирать алгоритмическую конструкцию, соответствующую той или иной ситуации; переходить от записи алгоритмической конструкции на алгоритмическом языке к блок-схеме и обратно);
- выполнять без использования компьютера («вручную») несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных, записанные на конкретном язык программирования с использованием основных управляющих конструкций последовательного программирования (линейная программа, ветвление, повторение, вспомогательные алгоритмы);
- исполнять линейный алгоритм для формального исполнителя с заданной системой команд; 16

- составлять линейные алгоритмы, число команд в которых не превышает заданное;
- ученик научится исполнять записанный на естественном языке алгоритм, обрабатывающий цепочки символов.
- исполнять линейные алгоритмы, записанные на алгоритмическом языке.
- исполнять алгоритмы с ветвлениями, записанные на алгоритмическом языке;
- понимать правила записи и выполнения алгоритмов, содержащих цикл с параметром или цикл с условием продолжения работы;
- определять значения переменных после исполнения простейших циклических алгоритмов, записанных на алгоритмическом языке;

Выпускник получит возможность:

- познакомиться с задачами обработки данных и алгоритмами их решения;
- исполнять алгоритмы, содержащие ветвления и повторения, для формального исполнителя с заданной системой команд;
- составлять все возможные алгоритмы фиксированной длины для формального исполнителя с заданной системой команд;
- определять количество линейных алгоритмов, обеспечивающих решение поставленной задачи, которые могут быть составлены для формального исполнителя с заданной системой команд;
- подсчитывать количество тех или иных символов в цепочке символов, являющейся результатом работы алгоритма;
- по данному алгоритму определять, для решения какой задачи он предназначен;
- исполнять записанные на алгоритмическом языке циклические алгоритмы обработки одномерного массива чисел (суммирование всех элементов массива; суммирование элементов массива с определёнными индексами; суммирование элементов массива, с заданными свойствами; определение количества элементов массива с заданными свойствами; поиск наибольшего/ наименьшего элементов массива и др.);
- разрабатывать в среде формального исполнителя короткие алгоритмы, содержащие базовые алгоритмические конструкции.

9 класс

Математическое моделирование Выпускник научится:

- анализировать информационные модели (таблицы, графики, диаграммы, схемы и др.);
- перекодировать информацию из одной пространственно-графической или знаковосимволической формы в другую, в том числе использовать графическое представление (визуализацию) числовой информации;
- выбирать форму представления данных (таблица, схема, график, диаграмма) в соответствии с поставленной задачей;
- использовать терминологию, связанную с графами (вершина, ребро, путь, длина ребра и пути), деревьями (корень, лист, высота дерева) и списками (первый элемент, последний элемент, предыдущий элемент, следующий элемент; вставка, удаление и замена элемента);
- описывать граф с помощью матрицы смежности с указанием длин ребер (знание термина «матрица смежности» не обязательно);
- познакомиться с двоичным кодированием текстов и с наиболее употребительными современными кодами;
- использовать основные способы графического представления числовой информации, (графики, диаграммы);
- строить простые информационные модели объектов и процессов из различных предметных областей с использованием типовых средств (таблиц, графиков, диаграмм, формул и пр.), оценивать адекватность построенной модели объекту-оригиналу и целям моделирования.

Выпускник получит возможность:

- сформировать представление о моделировании как методе научного познания; о компьютерных моделях и их использовании для исследования объектов окружающего мира;
- познакомиться с примерами использования графов и деревьев при описании реальных объектов

и процессов;

- познакомиться с примерами математических моделей и использования компьютеров при их анализе; понять сходства и различия между математической моделью объекта и его натурной моделью, между математической моделью объекта/явления и словесным описанием;
- научиться строить математическую модель задачи выделять исходные данные и результаты, выявлять соотношения между ними.

Базы данных. Поиск информации Выпускник научится:

- использовать табличные (реляционные) базы данных, выполнять отбор строк таблицы, удовлетворяющих определенному условию;
- осуществлять поиск информации в готовой базе данных.

Разработка алгоритмов и программ. Анализ алгоритмов Выпускник научится:

- составлять несложные алгоритмы управления исполнителями и анализа числовых и текстовых данных с использованием основных управляющих конструкций последовательного программирования и записывать их в виде программ на выбранном языке программирования; выполнять эти программы на компьютере;
- использовать величины (переменные) различных типов, табличные величины (массивы), а также выражения, составленные из этих величин; использовать оператор присваивания;
- анализировать предложенный алгоритм, например, определять какие результаты возможны при заданном множестве исходных значений;
- использовать логические значения, операции и выражения с ними;
- записывать на выбранном языке программирования арифметические и логические выражения и вычислять их значения.

Выпускник получит возможность:

- познакомиться с использованием в программах строковых величин и с операциями со строковыми величинами;
- узнать о данных от датчиков, например, датчиков роботизированных устройств;
- создавать программы для решения задач, возникающих в процессе учебы и вне ее.

Робототехника

Выпускник научится:

- составлять несложные алгоритмы управления исполнителями

Выпускник получит возможность:

- разрабатывать в среде формального исполнителя короткие алгоритмы, содержащие базовые алгоритмические конструкции;
- получить представления о роботизированных устройствах и их использовании на производстве и в научных исследованиях.

Электронные (динамические) таблицы Выпускник научится:

- использовать динамические (электронные) таблицы, в том числе формулы с использованием абсолютной, относительной и смешанной адресации, выделение диапазона таблицы и упорядочивание (сортировку) его элементов; построение диаграмм (круговой и столбчатой);

Выпускник овладеет:

- навыками работы с компьютером; знаниями, умениями и навыками, достаточными для работы с различными видами программных систем и интернет-сервисов (файловые менеджеры, текстовые редакторы, электронные таблицы, браузеры, поисковые системы, словари, электронные энциклопедии); умением описывать работу этих систем и сервисов с использованием соответствующей терминологии;
- различными формами представления данных (таблицы, диаграммы, графики и т. д.). **Выпускник получит возможность:**
- практиковаться в использовании основных видов прикладного программного обеспечения (редакторы текстов, электронные таблицы, браузеры и др.);
- познакомиться с примерами использования математического моделирования в современном мире;

- научиться проводить обработку большого массива данных с использованием средств электронной таблицы;

Работа в информационном пространстве. Информационно-коммуникационные технологии Выпускник научится:

- анализировать доменные имена компьютеров и адреса документов в Интернете;
- основам организации и функционирования компьютерных сетей;
- проводить поиск информации в сети Интернет по запросам с использованием логических операций.

Выпускник получит возможность:

- познакомиться с принципами функционирования Интернета и сетевого взаимодействия между компьютерами, с методами поиска в Интернете;
- расширить представления о компьютерных сетях распространения и обмена информацией, об использовании информационных ресурсов общества с соблюдением соответствующих правовых и этических норм, требований информационной безопасности;
- научиться оценивать возможное количество результатов поиска информации в Интернете, полученных по тем или иным запросам.
- закрепить представления о требованиях техники безопасности, гигиены, эргономики и ресурсосбережения при работе со средствами информационных и коммуникационных технологий;
- сформировать понимание принципов действия различных средств информатизации, их возможностей, технических и экономических ограничений.
- познакомиться с постановкой вопроса о том, насколько достоверна полученная информация, подкреплена ли она доказательствами подлинности (пример: наличие электронной подписи); познакомиться с возможными подходами к оценке достоверности информации (пример: сравнение данных из разных источников).

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА 5 класс

общее число часов - 17 ч.

Компьютер (3 ч., 1/2)

Компьютер - универсальная машина для работы с информацией. Техника безопасности и организация рабочего места.

Основные устройства компьютера, в том числе устройства для ввода информации (текста, звука, изображения) в компьютер.

Практические работы:

- 1. Компьютерные объекты. Программы и документы. Файлы и папки. Основные правила именования файлов. Элементы пользовательского интерфейса: рабочий стол; панель задач. Мышь, указатель мыши, действия с мышью. Управление компьютером с помощью мыши.
- 2. Компьютерные меню. Главное меню. Запуск программ. Окно программы и его компоненты. Диалоговые окна. Основные элементы управления, имеющиеся в диалоговых окнах. Ввод информации в память компьютера. Клавиатура. Группы клавиш. Основная позиция пальцев на клавиатуре.

Информация вокруг нас (5 ч., 2/2/1)

Информация и информатика. Как человек получает информацию. Виды информации по способу получения.

Хранение информации. Память человека и память человечества. Носители информации. Передача информации. Источник, канал, приёмник. Примеры передачи информации. Электронная почта.

Формы представления информации. Текст как форма представления информации. Табличная форма представления информации. Наглядные формы представления информации. Обработка информации. Разнообразие задач обработки информации.

Информация и знания. Чувственное познание окружающего мира. Абстрактное мышление. Понятие как форма мышления.

Изменение формы представления информации. Систематизация информации. Поиск информации. Получение новой информации. Преобразование информации по заданным правилам. Черные ящики.

Практические работы:

- 1. Код, кодирование информации. Способы кодирования информации. Метод координат.
- 2. Преобразование информации путем рассуждений. Разработка плана действий и его запись. Задачи на переливания. Задачи на переправы.

Контрольная работа по темам «Компьютер» и «Информация вокруг нас» Подготовка текстов на компьютере (6ч., 1/5)

Ввод информации в память компьютера. Клавиатура. Группы клавиш. Основная позиция пальцев на клавиатуре.

Текстовый редактор.

Правила ввода текста. Слово, предложение, абзац.

Практические работы:

- 3. Приёмы редактирования (вставка, удаление и замена символов).
- 4. Фрагмент. Перемещение и удаление фрагментов. Буфер обмена. Копирование фрагментов. Проверка правописания, расстановка переносов.
 - 5. Форматирование символов (шрифт, размер, начертание, цвет).
- 6. Форматирование абзацев (выравнивание, отступ первой строки, междустрочный интервал и др.). Создание и форматирование списков.
 - 7. Вставка в документ таблицы, ее форматирование и заполнение данными.

Компьютерная графика (2 ч.,1/1)

Компьютерная графика.

Простейший графический редактор.

Практические работы:

8. Инструменты графического редактора. Инструменты создания простейших графических объектов.

класс

Контрольная работа за курс 5 класса.-1ч.

6

общее число часов - 17ч.

Создание мультимедийных объектов (2 ч., 1/1)

Мультимедийная презентация.

Описание последовательно развивающихся событий (сюжет).

Практические работы:

1. Анимация. Возможности настройки анимации в редакторе презентаций. Создание эффекта движения с помощью смены последовательности рисунков.

Объекты и системы (4 ч., 2/1/1)

Объекты и их имена. Признаки объектов: свойства, действия, поведение, состояния. Отношения объектов. Разновидности объектов и их классификация. Состав объектов. Системы объектов. Система и окружающая среда.

Практические работы:

2. Персональный компьютер как система. Операционная система. Файловая система.

Контрольная работа «Объекты и системы»

Информационные модели (5 ч., 2/4/1)

Модели объектов и их назначение. Информационные модели. Простейшие математические модели.

Табличное решение логических задач.

Многообразие схем.

Практические работы:

- 3. Словесные информационные модели. Табличные информационные модели. Структура и правила оформления таблицы. Простые таблицы.
 - 4. Вычислительные таблицы.

- 5. Графики и диаграммы. Наглядное представление о соотношении величин. Визуализация многорядных данных.
 - Информационные модели на графах. Деревья.

Контрольная работа «Информационные модели» Алгоритмика (5 ч., 2/3)

Понятие исполнителя. Неформальные и формальные исполнители.

Что такое алгоритм. Различные формы записи алгоритмов (нумерованный список, таблица, блок-схема). Примеры линейных алгоритмов, алгоритмов с ветвлениями и повторениями (в повседневной жизни, в литературных произведениях, на уроках математики и т.д.).

Практические работы:

- Учебные исполнители (Черепаха, Кузнечик, Водолей и др.) как примеры формальных исполнителей. Их назначение, среда, режим работы, система команд. Управление исполнителями с помощью команд и их последовательностей.
- Составление линейных алгоритмов для управления исполнителем Чертёжник. Составление алгоритмов с ветвлениями для управления исполнителем Чертёжник.
 - Составление алгоритмов с циклами для управления исполнителем Чертёжник.

Контрольная работа за курс 6 класса – 1ч..

Общее число часов - 34 ч.

класс

1. Информация и информационные процессы (3 ч., 3/0) Информация - одно из основных обобщающих понятий современной науки.

Различные аспекты слова «информация»: информация как данные, которые могут быть обработаны автоматизированной системой и информация как сведения, предназначенные для восприятия человеком.

Примеры данных: тексты, числа. Дискретность данных. Анализ данных. Возможность описания непрерывных объектов и процессов с помощью дискретных данных.

Информационные процессы - процессы, связанные с хранением, преобразованием и передачей ланных.

Работа в информационном пространстве. Информационно-коммуникационные технологии (2 ч., 2/0)

Компьютерные сети. Интернет. Адресация в сети Интернет. Доменная система имен. Сайт. Сетевое хранение данных. Большие данные в природе и технике (геномные данные, результаты физических экспериментов, Интернет-данные, в частности, данные социальных сетей). Технологии их обработки и хранения.

3. Тексты и кодирование (3 ч., 2/1)

Символ. Алфавит - конечное множество символов. Текст - конечная последовательность символов данного алфавита. Количество различных текстов данной длины в данном алфавите. Разнообразие языков и алфавитов. Естественные и формальные языки. Алфавит текстов на русском

Двоичный алфавит. Представление данных в компьютере как текстов в двоичном алфавите. Двоичные коды с фиксированной длиной кодового слова. Разрядность кода - длина кодового слова. Примеры двоичных кодов с разрядностью 8, 16, 32.

Единицы измерения длины двоичных текстов: бит, байт, Килобайт и т. д.

Подход А.Н.Колмогорова к определению количества информации.

Код ASCII. Кодировки кириллицы. Примеры кодирования букв национальных алфавитов. Представление о стандарте Unicode. *Таблицы кодировки с алфавитом, отличным от двоичного*.

Искажение информации при передаче. Коды, исправляющие ошибки. Возможность однозначного декодирования для кодов с различной длиной кодовых слов.

Практические работы:

- Кодирование символов одного алфавита с помощью кодовых слов в другом алфавите; 1. кодовая таблица, декодирование.
 - Количество информации, содержащееся в сообщении. Зависимость количества кодовых 2.

комбинаций от разрядности кода.

Контрольная работа № 1 «Информация и информационные процессы Работа в информационном пространстве. Информационно-коммуникационные технологии.

Тексты и кодирование» (1 ч.)

4. Компьютер - универсальное устройство обработки данных (4 ч., 4/0)

Архитектура компьютера: процессор, оперативная память, внешняя энергонезависимая память, устройства ввода-вывода; их количественные характеристики.

Компьютеры, встроенные в технические устройства и производственные комплексы. Роботизированные производства, аддитивные технологии (SD-принтеры).

Программное обеспечение компьютера.

Носители информации, используемые в ИКТ. История и перспективы развития. Представление об объемах данных и скоростях доступа, характерных для различных видов носителей. *Носители информации в живой природе*.

Суперкомпьютеры.

Физические ограничения на значения характеристик компьютеров.

Параллельные вычисления.

Техника безопасности и правила работы на компьютере.

5. Файловая система (2 ч., 1/1)

Принципы построения файловых систем. Каталог (директория). Типы файлов.

Характерные размеры файлов различных типов (страница печатного текста, полный текст романа «Евгений Онегин», минутный видеоклип, полуторачасовой фильм, файл данных космических наблюдений, файл промежуточных данных при математическом моделировании сложных физических процессов и др.).

Файловый менеджер.

Практические работы:

- 3. Основные операции при работе с файлами: создание, редактирование, копирование, перемещение, удаление.
 - 4. Поиск в файловой системе. Архивирование и разархивирование.

Контрольная работа № 2 «Компьютер - универсальное устройство обработки данных. Файловая система» (1 ч.)

6. Подготовка текстов и демонстрационных материалов (13 ч., 5/8)

Текстовые документы и их структурные элементы (страница, абзац, строка, слово, символ). Текстовый процессор - инструмент создания, редактирования и форматирования текстов. Свойства страницы, абзаца, символа. Стилевое форматирование.

История изменений.

Проверка правописания, словари.

Инструменты ввода текста с использованием сканера, программ распознавания, расшифровки устной речи. Компьютерный перевод.

Понятие о системе стандартов по информации, библиотечному и издательскому делу. Деловая переписка, учебная публикация, коллективная работа. Реферат и аннотация.

Знакомство с графическими редакторами.

Средства компьютерного проектирования. Чертежи и работа с ними. Базовые операции: выделение, объединение, геометрические преобразования фрагментов и компонентов. Диаграммы, планы, карты.

Практические работы:

- 5. Включение в текстовый документ списков, таблиц, и графических объектов.
- 6. Включение в текстовый документ диаграмм, формул, нумерации страниц, колонтитулов, ссылок и др.
 - 7. Подготовка компьютерных презентаций.
 - 8. Включение в презентацию аудиовизуальных объектов.
- 9. Операции редактирования графических объектов: изменение размера, сжатие изображения; обрезка, поворот, отражение.

- 10. Операции редактирования графических объектов: работа с областями (выделение, копирование, заливка цветом), коррекция цвета, яркости и контрастности.
- 11. Ввод изображений с использованием различных цифровых устройств (цифровых фотоаппаратов и микроскопов, видеокамер, сканеров и т. д.).
 - 12. Знакомство с обработкой фотографий. Геометрические и стилевые преобразования.

7. Дискретизация (3 ч., 2/1)

Измерение и дискретизация. Общее представление о цифровом представлении аудиовизуальных и других непрерывных данных.

Кодирование цвета. Цветовые модели. Модели RGB и CMYK. Модели HSB и CMY. Глубина

кодирования. Знакомство с растровой и векторной графикой.

Кодирование звука. Разрядность и частота записи. Количество каналов записи.

Практические работы:

12. Оценка количественных параметров, связанных с представлением и хранением изображений и звуковых файлов.

Контрольная работа за курс 7 класса (1 ч.)

8 класс

Общее число часов - 34 ч.

1. Системы счисления (5 ч., 2/3)

Позиционные и непозиционные системы счисления. Примеры представления чисел в позиционных системах счисления.

Основание системы счисления. Алфавит (множество цифр) системы счисления. Количество цифр, используемых в системе счисления с заданным основанием. Краткая и развернутая формы записи чисел в позиционных системах счисления.

Двоичная система счисления, запись целых чисел в пределах от 0 до 1024.

Восьмеричная и шестнадцатеричная системы счисления.

Практические работы:

- 1. Перевод натуральных чисел из десятичной системы счисления в двоичную и из двоичной в десятичную.
- 2. Перевод натуральных чисел из десятичной системы счисления в восьмеричную, шестнадцатеричную и обратно.
- 3. Перевод натуральных чисел из двоичной системы счисления в восьмеричную и шестнадцатеричную и обратно.
 - 4. Арифметические действия в системах счисления.

Контрольная работа№1 «Системы счисления» (1 ч.)

2. Элементы комбинаторики, теории множеств и математической логики (7 ч., 5/2) Множество.

Высказывания. Простые и сложные высказывания. Диаграммы Эйлера-Венна. Логические значения высказываний. Логические выражения. Логические операции: «и» (конъюнкция, логическое умножение), «или» (дизъюнкция, логическое сложение), «не» (логическое отрицание). Правила записи логических выражений. Приоритеты логических операций.

Таблицы истинности.

Логические операции следования (импликация) и равносильности (эквивалентность). Свойства логических операций. Законы алгебры логики. Использование таблиц истинности для доказательства законов алгебры логики. Логические элементы. Схемы логических элементов и их физическая (электронная) реализация. Знакомство с логическими основами компьютера.

Практические работы:

- 5. Построение таблиц истинности для логических выражений.
- 6. Расчет количества вариантов: формулы перемножения и сложения количества вариантов.
- 7. Определение количества элементов во множествах, полученных из двух или трех базовых множеств с помощью операций объединения, пересечения и дополнения.

Контрольная работа №2 «Элементы комбинаторики, теории множеств и математической логики» (1 ч.)

3. Исполнители и алгоритмы. Управление исполнителями (6 ч., 5/1) 24

Исполнители. Состояния, возможные обстановки и система команд исполнителя; командыприказы и команды-запросы; отказ исполнителя. Необходимость формального описания исполнителя. Ручное управление исполнителем.

Алгоритм как план управления исполнителем (исполнителями). Алгоритмический язык (язык программирования) - формальный язык для записи алгоритмов. Программа - запись алгоритма на конкретном алгоритмическом языке. Компьютер - автоматическое устройство, способное управлять по заранее составленной программе исполнителями, выполняющими команды. Программное управление исполнителем.

Словесное описание алгоритмов. Отличие словесного описания алгоритма, от описания на формальном алгоритмическом языке.

Системы программирования. Средства создания и выполнения программ.

Управление. Сигнал. Обратная связь. Примеры: компьютер и управляемый им исполнитель (в том числе робот); компьютер, получающий сигналы от цифровых датчиков в ходе наблюдений и экспериментов, и управляющий реальными (в том числе движущимися) устройствами. Практические работы:

8. Описание алгоритма с помощью блок-схем.

4. Алгоритмические конструкции (13 ч., 10/3)

Конструкция «следование». Линейный алгоритм. Ограниченность линейных алгоритмов: невозможность предусмотреть зависимость последовательности выполняемых действий от исходных данных.

Конструкция «ветвление». Условный оператор: полная и неполная формы.

Выполнение и невыполнения условия (истинность и ложность высказывания). Простые и составные условия. Запись составных условий.

Конструкция «повторения»: циклы с заданным числом повторений, с условием выполнения, с переменной цикла.

Примеры записи команд ветвления и повторения и других конструкций в различных алгоритмических языках.

Практические работы:

- 9. Проверка условия выполнения цикла до начала выполнения тела цикла и после выполнения тела цикла: постусловие и предусловие цикла. Инвариант цикла.
- 10. Запись алгоритмических конструкций в выбранном языке программирования. Контрольная работа за курс 8 класса. (1 ч.) класс

общее число часов - 34 ч.

1. Математическое моделирование (3 ч., 2/1)

Понятие математической модели. Задачи, решаемые с помощью математического (компьютерного) моделирования. Отличие математической модели от натурной модели и от словесного (литературного) описания объекта. Использование компьютеров при работе с математическими моделями.

Компьютерные эксперименты.

Практические работы:

- 1. Примеры использования математических (компьютерных) моделей при решении научнотехнических задач. Представление о цикле моделирования: построение математической модели, ее программная реализация, проверка на простых примерах (тестирование), проведение компьютерного эксперимента, анализ его результатов, уточнение модели.
- 2. Списки, графы, деревья (3 ч., 3/0)

Список. Первый элемент, последний элемент, предыдущий элемент, следующий элемент. Вставка, удаление и замена элемента.

Граф. Вершина, ребро, путь. Ориентированные и неориентированные графы. Начальная вершина (источник) и конечная вершина (сток) в ориентированном графе. Длина (вес) ребра и пути. Понятие минимального пути. Матрица смежности графа (с длинами ребер).

Дерево. Корень, лист, вершина (узел). Предшествующая вершина, последующие вершины. Поддерево. Высота дерева. *Бинарное дерево. Генеалогическое дерево*.

Практические работы:

2. Решение задач по теории графов, деревьев.

3. Базы данных. Поиск информации (3 ч., 2/1)

Базы данных. Таблица как представление отношения.

Средства и методика поиска информации. Построение запросов; браузеры. Поиск информации в сети Интернет. Компьютерные энциклопедии и словари. Компьютерные карты и другие справочные системы. *Поисковые машины*.

Практические работы:

3. Поиск данных в готовой базе. Связи между таблицами.

4. Разработка алгоритмов и программ (12 ч., 4/8)

Оператор присваивания. Представление о структурах данных.

Константы и переменные. Переменная: имя и значение. Типы переменных: целые, вещественные, символьные, строковые, логические. Табличные величины (массивы). Одномерные массивы. Двумерные массивы.

Понятие об этапах разработки программ: составление требований к программе, выбор алгоритма и его реализация в виде программы на выбранном алгоритмическом языке, отладка программы с помощью выбранной системы программирования, тестирование.

Простейшие приемы диалоговой отладки программ (выбор точки останова, пошаговое выполнение, просмотр значений величин, отладочный вывод).

Знакомство с документированием программ.

Практические работы:

- 4. Составление алгоритмов и программ по управлению исполнителями Робот, Черепашка, Чертежник и др.
- 5. Знакомство с алгоритмами решения задач. Реализации алгоритмов в выбранной среде программирования.
 - нахождение минимального и максимального числа из двух, трех, четырех данных чисел;
 - нахождение всех корней заданного квадратного уравнения;
 - заполнение числового массива в соответствии с формулой или путем ввода чисел;
 - нахождение суммы элементов данной конечной числовой последовательности или массива;
 - нахождение минимального (максимального) элемента массива.
- 6. Знакомство с постановками более сложных задач обработки данных и алгоритмами их решения: сортировка массива, выполнение поэлементных операций с массивами.
- 7. Обработка целых чисел, представленных записями в десятичной и двоичной системах счисления, нахождение наибольшего общего делителя (алгоритм Евклида).
 - 8. Составление описание программы по образцу.

5. Анализ алгоритмов (2 ч., 1/1)

Сложность вычисления: количество выполненных операций, размер используемой памяти; их зависимость от размера исходных данных. Примеры коротких программ, выполняющих много шагов по обработке небольшого объема данных; примеры коротких программ, выполняющих обработку большого объема данных.

Примеры описания объектов и процессов с помощью набора числовых характеристик, а также зависимостей между этими характеристиками, выражаемыми с помощью формул. Практические работы:

9. Определение возможных результатов работы алгоритма при данном множестве входных данных; определение возможных входных данных, приводящих к данному результату. Контрольная работа №1 «Разработка алгоритмов и программ. Анализ алгоритмов» (1 ч.) 6. *Роботомехника* (2 ч., 1/1)

Робототехника - наука о разработке и использовании автоматизированных технических систем. Автономные роботы и автоматизированные комплексы. Микроконтроллер. Сигнал. Обратная связь: получение сигналов от цифровых датчиков (касания, расстояния, света, звука и др.

Примеры роботизированных систем (система управления движением в транспортной системе, сварочная линия автозавода, автоматизированное управление отопления дома, автономная система

управления транспортным средством и т.п.).

Автономные движущиеся роботы. Исполнительные устройства, датчики. Система команд робота. Моделирование робота парой: исполнитель команд и устройство управления. Ручное и программное управление роботами.

Пример учебной среды разработки программ управления движущимися роботами. Алгоритмы управления движущимися роботами.

Влияние ошибок измерений и вычислений на выполнение алгоритмов управления роботом. Практические работы:

- 10. Конструирование робота. Реализация алгоритмов "движение до препятствия", "следование вдоль линии" и т.п.
- 11. Анализ алгоритмов действий роботов. Испытание механизма робота, отладка программы управления роботом.
- 7. Электронные (динамические) таблицы (4 ч., 1/3)

Электронные (динамические) таблицы.

Практические работы:

- 12. Формулы с использованием абсолютной, относительной и смешанной адресации.
- 13. Преобразование формул при копировании.
- 14. Выделение диапазона таблицы и упорядочивание (сортировка) его элементов; построение графиков и диаграмм.
- 8. Работа в информационном пространстве. Информационно-коммуникационные технологии (3 ч., 2/1)

Виды деятельности в сети Интернет.

Компьютерные вирусы и другие вредоносные программы; защита от них.

Проблема подлинности полученной информации. Электронная подпись, сертифицированные сайты и документы. Методы индивидуального и коллективного размещения новой информации в сети Интернет. Взаимодействие на основе компьютерных сетей: электронная почта, чат, форум, телеконференция и др.

Гигиенические, эргономические и технические условия эксплуатации средств ИКТ. Экономические, правовые и этические аспекты их использования. Личная информация, средства ее защиты. Организация личного информационного пространства.

Основные этапы и тенденции развития ИКТ. Стандарты в сфере информатики и ИКТ. Стандартызация и стандарты в сфере информатики и ИКТ докомпьютерной эры (запись чисел, алфавитов национальных языков и др.) и компьютерной эры (языки программирования, адресация в сети Интернет и др.).

Практические работы:

- 15. Интернет сервисы: почтовая служба; справочные службы (карты, расписания и т. п.), поисковые службы, службы обновления программного обеспечения и др.
- 16. Приемы, повышающие безопасность работы в сети Интернет.

Контрольная работа за курс 9 класса (1 ч.)

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

СОДЕРЖАНИЕ	5 класс	6 класс	7 класс	8 класс	9 класс
- Информация вокруг нас	5				
- Компьютер	3				
	6				
- Подготовка текстов на компьютере					
- Компьютерная графика	3				
		2			
- Создание мультимедийных объектов					
- Объекты и системы		4			
- Информационные модели		5			
- Алгоритмика		6			

1. Введение				
- Информация и информационные процессы		6		
- Компьютер - универсальное устройство обработки данных		5		
2. Математические основы		23	14	
информатики				
3. Алгоритмы и элементы программирования			10	20
4. Использование программных систем и сервисов		19	10	14